Spontaneous and Divergent Hexaploid Triticales Derived from Common Wheat × Rye by Complete Elimination of D-Genome Chromosomes
نویسندگان
چکیده
BACKGROUND Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale. METHODOLOGY/PRINCIPAL FINDINGS Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L.) × Austrian rye (Secale cereale L.) were reported, exhibiting high resistance for powdery mildew and stripe rust and potential for wheat improvement. Sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) karyotyping revealed that D-genome chromosomes were completely eliminated and the whole A-genome, B-genome and R-genome chromosomes were retained in both lines. Furthermore, plentiful alterations of wheat chromosomes including 5A and 7B were detected in both triticales and additionally altered 5B, 7A chromosome and restructured chromosome 2A was assayed in N9116H and N9116M, respectively, even after selfing for several decades. Besides, meiotic asynchrony was displayed and a variety of storage protein variations were assayed, especially in the HMW/LMW-GS region and secalins region in both triticales. CONCLUSION This study confirms that whole D-genome chromosomes could be preferentially eliminated in the hybrid of common wheat × rye, "genome shock" was accompanying the allopolyploidization of nascent triticales, and great morphologic divergence might result from the genetic variations. Moreover, new hexaploid triticale lines contributing potential resistance resources for wheat improvement were produced.
منابع مشابه
Divergent Development of Hexaploid Triticale by a Wheat – Rye –Psathyrostachys huashanica Trigeneric Hybrid Method
Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we d...
متن کاملMitotic and meiotic behavior of rye chromosomes in wheat - Psathyrostachys huashanica amphiploid x triticale progeny.
The dynamics of rye chromosomes during mitosis and meiosis was analyzed in a subset comprising 33 F3 lines from the cross of wheat, Psathyrostachys huashanica amphiploid (AABBDDNsNs) and hexaploid triticale (AABBRR), as visualized by genomic in situ hybridization. The results indicated that 31 of the total lines contained 4-14 rye chromosomes. Twenty-eight combinations had more rye chromosomes ...
متن کاملCytogenetically Engineered Rye Chromosomes 1R to Improve Bread-making Quality of Hexaploid Triticale
Hexaploid triticale (X Triticosecale Wittmack) is rarely used for human consumption because of its poor bread-making quality. To create the genetic potential for bread-making quality similar to that of bread wheat (Triticum aestivum L), rye (Secale cereale L.) chromosome 1R in triticale cv. Presto was cytogenetically engineered to remove secalin loci Sec-1 and Sec-3, and to introduce wheat stor...
متن کاملGenetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.
The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new w...
متن کاملRapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes.
To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and gr...
متن کامل